HiKE:韩英代码转换语音识别的层次化评估框架
HiKE: Hierarchical Evaluation Framework for Korean-English Code-Switching Speech Recognition
September 29, 2025
作者: Gio Paik, Yongbeom Kim, Soungmin Lee, Sangmin Ahn, Chanwoo Kim
cs.AI
摘要
尽管多语言自动语音识别(ASR)技术已取得显著进展,但语码转换(CS)——即日常对话中常见的语言混合现象——仍是一个被严重忽视的挑战。本文介绍了HiKE:层次化韩英语码转换基准,这是首个全球可访问的韩英语码转换评估框架,旨在为多语言ASR模型提供精确的评估手段,并推动该领域的研究。所提出的框架不仅包含跨主题的高质量、自然语码转换数据,还提供了细致的借词标签及层次化的语码转换级别标注方案(词、短语、句子),共同支持对模型处理各层次语码转换能力的系统性评估。通过对多种多语言ASR模型的评估及微调实验,本文表明,尽管大多数多语言ASR模型在初始阶段难以应对CS-ASR任务,但通过使用CS数据进行微调,这一能力可以得到显著提升。HiKE框架将在https://github.com/ThetaOne-AI/HiKE 上公开提供。
English
Despite advances in multilingual automatic speech recognition (ASR),
code-switching (CS), the mixing of languages within an utterance common in
daily speech, remains a severely underexplored challenge. In this paper, we
introduce HiKE: the Hierarchical Korean-English code-switching benchmark, the
first globally accessible evaluation framework for Korean-English CS, aiming to
provide a means for the precise evaluation of multilingual ASR models and to
foster research in the field. The proposed framework not only consists of
high-quality, natural CS data across various topics, but also provides
meticulous loanword labels and a hierarchical CS-level labeling scheme (word,
phrase, and sentence) that together enable a systematic evaluation of a model's
ability to handle each distinct level of code-switching. Through evaluations of
diverse multilingual ASR models and fine-tuning experiments, this paper
demonstrates that while most multilingual ASR models initially struggle with
CS-ASR, this capability can be enabled through fine-tuning with CS data. HiKE
will be available at https://github.com/ThetaOne-AI/HiKE.