ReMoMask:檢索增強型遮罩動作生成
ReMoMask: Retrieval-Augmented Masked Motion Generation
August 4, 2025
作者: Zhengdao Li, Siheng Wang, Zeyu Zhang, Hao Tang
cs.AI
摘要
文本到動作(T2M)生成旨在從自然語言描述中合成出真實且語義對齊的人體動作序列。然而,現有方法面臨雙重挑戰:生成模型(如擴散模型)存在多樣性有限、錯誤累積和物理不可行性等問題,而檢索增強生成(RAG)方法則表現出擴散慣性、部分模式崩潰和異步偽影等缺陷。為解決這些限制,我們提出了ReMoMask,這是一個整合了三項關鍵創新的統一框架:1)雙向動量文本-動作模型通過動量隊列將負樣本規模與批次大小解耦,顯著提高了跨模態檢索精度;2)語義時空注意力機制在部分級融合過程中施加生物力學約束,以消除異步偽影;3)RAG-無分類器指導結合少量無條件生成以增強泛化能力。基於MoMask的RVQ-VAE,ReMoMask能夠以最少的步驟高效生成時間連貫的動作。在標準基準上的大量實驗表明,ReMoMask達到了最先進的性能,與之前的SOTA方法RAG-T2M相比,在HumanML3D和KIT-ML上的FID分數分別提高了3.88%和10.97%。代碼:https://github.com/AIGeeksGroup/ReMoMask。網站:https://aigeeksgroup.github.io/ReMoMask。
English
Text-to-Motion (T2M) generation aims to synthesize realistic and semantically
aligned human motion sequences from natural language descriptions. However,
current approaches face dual challenges: Generative models (e.g., diffusion
models) suffer from limited diversity, error accumulation, and physical
implausibility, while Retrieval-Augmented Generation (RAG) methods exhibit
diffusion inertia, partial-mode collapse, and asynchronous artifacts. To
address these limitations, we propose ReMoMask, a unified framework integrating
three key innovations: 1) A Bidirectional Momentum Text-Motion Model decouples
negative sample scale from batch size via momentum queues, substantially
improving cross-modal retrieval precision; 2) A Semantic Spatio-temporal
Attention mechanism enforces biomechanical constraints during part-level fusion
to eliminate asynchronous artifacts; 3) RAG-Classier-Free Guidance incorporates
minor unconditional generation to enhance generalization. Built upon MoMask's
RVQ-VAE, ReMoMask efficiently generates temporally coherent motions in minimal
steps. Extensive experiments on standard benchmarks demonstrate the
state-of-the-art performance of ReMoMask, achieving a 3.88% and 10.97%
improvement in FID scores on HumanML3D and KIT-ML, respectively, compared to
the previous SOTA method RAG-T2M. Code:
https://github.com/AIGeeksGroup/ReMoMask. Website:
https://aigeeksgroup.github.io/ReMoMask.