ReMoMask:检索增强的掩码运动生成
ReMoMask: Retrieval-Augmented Masked Motion Generation
August 4, 2025
作者: Zhengdao Li, Siheng Wang, Zeyu Zhang, Hao Tang
cs.AI
摘要
文本到动作生成(Text-to-Motion, T2M)旨在从自然语言描述中合成出真实且语义对齐的人体运动序列。然而,现有方法面临双重挑战:生成模型(如扩散模型)受限于多样性不足、误差累积及物理不真实性,而检索增强生成(Retrieval-Augmented Generation, RAG)方法则表现出扩散惰性、部分模式崩溃及异步伪影。为克服这些局限,我们提出了ReMoMask,一个融合三项关键创新的统一框架:1)双向动量文本-动作模型通过动量队列解耦负样本规模与批量大小,显著提升跨模态检索精度;2)语义时空注意力机制在部分层级融合中强化生物力学约束,以消除异步伪影;3)RAG-无分类器指导结合少量无条件生成,增强泛化能力。基于MoMask的RVQ-VAE,ReMoMask在极少的步骤内高效生成时间连贯的动作。在标准基准上的大量实验验证了ReMoMask的顶尖性能,相较于前SOTA方法RAG-T2M,在HumanML3D和KIT-ML上的FID分数分别提升了3.88%和10.97%。代码与网站链接如下:https://github.com/AIGeeksGroup/ReMoMask,https://aigeeksgroup.github.io/ReMoMask。
English
Text-to-Motion (T2M) generation aims to synthesize realistic and semantically
aligned human motion sequences from natural language descriptions. However,
current approaches face dual challenges: Generative models (e.g., diffusion
models) suffer from limited diversity, error accumulation, and physical
implausibility, while Retrieval-Augmented Generation (RAG) methods exhibit
diffusion inertia, partial-mode collapse, and asynchronous artifacts. To
address these limitations, we propose ReMoMask, a unified framework integrating
three key innovations: 1) A Bidirectional Momentum Text-Motion Model decouples
negative sample scale from batch size via momentum queues, substantially
improving cross-modal retrieval precision; 2) A Semantic Spatio-temporal
Attention mechanism enforces biomechanical constraints during part-level fusion
to eliminate asynchronous artifacts; 3) RAG-Classier-Free Guidance incorporates
minor unconditional generation to enhance generalization. Built upon MoMask's
RVQ-VAE, ReMoMask efficiently generates temporally coherent motions in minimal
steps. Extensive experiments on standard benchmarks demonstrate the
state-of-the-art performance of ReMoMask, achieving a 3.88% and 10.97%
improvement in FID scores on HumanML3D and KIT-ML, respectively, compared to
the previous SOTA method RAG-T2M. Code:
https://github.com/AIGeeksGroup/ReMoMask. Website:
https://aigeeksgroup.github.io/ReMoMask.