專家提示:逐步工具檢索改善規劃。
ProTIP: Progressive Tool Retrieval Improves Planning
December 16, 2023
作者: Raviteja Anantha, Bortik Bandyopadhyay, Anirudh Kashi, Sayantan Mahinder, Andrew W Hill, Srinivas Chappidi
cs.AI
摘要
大型語言模型(LLMs)越來越被廣泛應用於複雜的多步規劃任務中,其中工具檢索(TR)步驟對於實現成功結果至關重要。用於TR的兩種主要方法是單步檢索,利用完整查詢,以及使用任務分解(TD)的順序檢索,其中完整查詢被分割為離散的原子子任務。雖然單步檢索缺乏處理“工具間依賴性”的靈活性,但TD方法需要保持“子任務-工具原子性對齊”,因為工具箱可能會動態演變。為了解決這些限制,我們引入了逐步工具檢索以改進規劃(ProTIP)框架。ProTIP是一個輕量級的、基於對比學習的框架,它在不需要明確要求子任務標籤的情況下隱式執行TD,同時保持子任務-工具原子性。在ToolBench數據集上,ProTIP以顯著的優勢勝過基於ChatGPT任務分解方法,實現了TR的Recall@K=10提高了24%,並且在計劃生成方面工具準確性提高了41%。
English
Large language models (LLMs) are increasingly employed for complex multi-step
planning tasks, where the tool retrieval (TR) step is crucial for achieving
successful outcomes. Two prevalent approaches for TR are single-step retrieval,
which utilizes the complete query, and sequential retrieval using task
decomposition (TD), where a full query is segmented into discrete atomic
subtasks. While single-step retrieval lacks the flexibility to handle
"inter-tool dependency," the TD approach necessitates maintaining "subtask-tool
atomicity alignment," as the toolbox can evolve dynamically. To address these
limitations, we introduce the Progressive Tool retrieval to Improve Planning
(ProTIP) framework. ProTIP is a lightweight, contrastive learning-based
framework that implicitly performs TD without the explicit requirement of
subtask labels, while simultaneously maintaining subtask-tool atomicity. On the
ToolBench dataset, ProTIP outperforms the ChatGPT task decomposition-based
approach by a remarkable margin, achieving a 24% improvement in Recall@K=10 for
TR and a 41% enhancement in tool accuracy for plan generation.