渐进式工具检索改进规划
ProTIP: Progressive Tool Retrieval Improves Planning
December 16, 2023
作者: Raviteja Anantha, Bortik Bandyopadhyay, Anirudh Kashi, Sayantan Mahinder, Andrew W Hill, Srinivas Chappidi
cs.AI
摘要
大型语言模型(LLMs)越来越多地用于复杂的多步规划任务中,其中工具检索(TR)步骤对于取得成功结果至关重要。工具检索的两种主要方法是单步检索,利用完整查询,和使用任务分解(TD)的顺序检索,其中完整查询被分割成离散的原子子任务。虽然单步检索缺乏处理“工具间依赖”的灵活性,但TD方法需要保持“子任务-工具原子性对齐”,因为工具箱可以动态演变。为了解决这些限制,我们引入了渐进式工具检索以改进规划(ProTIP)框架。ProTIP是一个基于轻量级对比学习的框架,可以在不需要显式子任务标签的情况下隐式执行TD,同时保持子任务-工具的原子性。在ToolBench数据集上,ProTIP的表现远远优于基于ChatGPT任务分解的方法,TR的Recall@K=10提高了24%,规划生成的工具准确性提高了41%。
English
Large language models (LLMs) are increasingly employed for complex multi-step
planning tasks, where the tool retrieval (TR) step is crucial for achieving
successful outcomes. Two prevalent approaches for TR are single-step retrieval,
which utilizes the complete query, and sequential retrieval using task
decomposition (TD), where a full query is segmented into discrete atomic
subtasks. While single-step retrieval lacks the flexibility to handle
"inter-tool dependency," the TD approach necessitates maintaining "subtask-tool
atomicity alignment," as the toolbox can evolve dynamically. To address these
limitations, we introduce the Progressive Tool retrieval to Improve Planning
(ProTIP) framework. ProTIP is a lightweight, contrastive learning-based
framework that implicitly performs TD without the explicit requirement of
subtask labels, while simultaneously maintaining subtask-tool atomicity. On the
ToolBench dataset, ProTIP outperforms the ChatGPT task decomposition-based
approach by a remarkable margin, achieving a 24% improvement in Recall@K=10 for
TR and a 41% enhancement in tool accuracy for plan generation.