SD3.5-Flash:基於分佈引導的生成流蒸餾
SD3.5-Flash: Distribution-Guided Distillation of Generative Flows
September 25, 2025
作者: Hmrishav Bandyopadhyay, Rahim Entezari, Jim Scott, Reshinth Adithyan, Yi-Zhe Song, Varun Jampani
cs.AI
摘要
我們推出SD3.5-Flash,這是一個高效的少步蒸餾框架,旨在將高品質的圖像生成技術帶入普及的消費級設備。我們的方法通過專門為少步生成重新設計的分佈匹配目標,來蒸餾計算上難以處理的修正流模型。我們引入了兩項關鍵創新:「時間步共享」以減少梯度噪聲,以及「分割時間步微調」來提升提示對齊效果。結合全面的管道優化,如文本編碼器重構和專用量化技術,我們的系統能夠在不同硬件配置上實現快速生成和記憶體高效部署。這使得從手機到桌面電腦的全範圍設備都能平等地使用這項技術。通過包括大規模用戶研究在內的廣泛評估,我們證明SD3.5-Flash在少步方法中始終表現優異,使先進的生成式AI真正實現了實際部署的普及化。
English
We present SD3.5-Flash, an efficient few-step distillation framework that
brings high-quality image generation to accessible consumer devices. Our
approach distills computationally prohibitive rectified flow models through a
reformulated distribution matching objective tailored specifically for few-step
generation. We introduce two key innovations: "timestep sharing" to reduce
gradient noise and "split-timestep fine-tuning" to improve prompt alignment.
Combined with comprehensive pipeline optimizations like text encoder
restructuring and specialized quantization, our system enables both rapid
generation and memory-efficient deployment across different hardware
configurations. This democratizes access across the full spectrum of devices,
from mobile phones to desktop computers. Through extensive evaluation including
large-scale user studies, we demonstrate that SD3.5-Flash consistently
outperforms existing few-step methods, making advanced generative AI truly
accessible for practical deployment.