SD3.5-Flash:基于分布引导的生成流蒸馏技术
SD3.5-Flash: Distribution-Guided Distillation of Generative Flows
September 25, 2025
作者: Hmrishav Bandyopadhyay, Rahim Entezari, Jim Scott, Reshinth Adithyan, Yi-Zhe Song, Varun Jampani
cs.AI
摘要
我们推出SD3.5-Flash,一种高效的少步蒸馏框架,旨在将高质量图像生成能力引入普及型消费设备。该方法通过专门为少步生成重新设计的分布匹配目标,对计算量巨大的校正流模型进行蒸馏。我们引入两项关键创新:“时间步共享”以减少梯度噪声,以及“分步微调”以提升提示对齐效果。结合文本编码器重构和专用量化等全面的管道优化措施,我们的系统实现了快速生成和跨不同硬件配置的内存高效部署。这使从手机到台式机的全系列设备都能平等地获得这一技术。通过包括大规模用户研究在内的广泛评估,我们证明SD3.5-Flash在少步方法中持续领先,使先进的生成式AI真正适用于实际部署。
English
We present SD3.5-Flash, an efficient few-step distillation framework that
brings high-quality image generation to accessible consumer devices. Our
approach distills computationally prohibitive rectified flow models through a
reformulated distribution matching objective tailored specifically for few-step
generation. We introduce two key innovations: "timestep sharing" to reduce
gradient noise and "split-timestep fine-tuning" to improve prompt alignment.
Combined with comprehensive pipeline optimizations like text encoder
restructuring and specialized quantization, our system enables both rapid
generation and memory-efficient deployment across different hardware
configurations. This democratizes access across the full spectrum of devices,
from mobile phones to desktop computers. Through extensive evaluation including
large-scale user studies, we demonstrate that SD3.5-Flash consistently
outperforms existing few-step methods, making advanced generative AI truly
accessible for practical deployment.