Mark集提示在GPT-4V中釋放出非凡的視覺 grounding 能力
Set-of-Mark Prompting Unleashes Extraordinary Visual Grounding in GPT-4V
October 17, 2023
作者: Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, Jianfeng Gao
cs.AI
摘要
我們提出了一種名為Mark集(SoM)的新視覺提示方法,旨在發揮大型多模型(LMMs)如GPT-4V的視覺基礎能力。如右圖1所示,我們使用SAM等現成的互動分割模型,將圖像劃分為不同粒度的區域,並在這些區域上覆蓋一組標記,例如字母數字、遮罩、框等。使用標記圖像作為輸入,GPT-4V可以回答需要視覺基礎的問題。我們進行了全面的實證研究,驗證了SoM在各種精細視覺和多模式任務上的有效性。例如,我們的實驗表明,具有SoM的GPT-4V在RefCOCOg的零樣本設置下優於最先進的完全微調指涉分割模型。
English
We present Set-of-Mark (SoM), a new visual prompting method, to unleash the
visual grounding abilities of large multimodal models (LMMs), such as GPT-4V.
As illustrated in Fig. 1 (right), we employ off-the-shelf interactive
segmentation models, such as SAM, to partition an image into regions at
different levels of granularity, and overlay these regions with a set of marks
e.g., alphanumerics, masks, boxes. Using the marked image as input, GPT-4V can
answer the questions that require visual grounding. We perform a comprehensive
empirical study to validate the effectiveness of SoM on a wide range of
fine-grained vision and multimodal tasks. For example, our experiments show
that GPT-4V with SoM outperforms the state-of-the-art fully-finetuned referring
segmentation model on RefCOCOg in a zero-shot setting.