Mark集提示在GPT-4V中释放出非凡的视觉 grounding 能力
Set-of-Mark Prompting Unleashes Extraordinary Visual Grounding in GPT-4V
October 17, 2023
作者: Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, Jianfeng Gao
cs.AI
摘要
我们提出了一种名为Mark集合(SoM)的新视觉提示方法,旨在释放大型多模态模型(LMMs)如GPT-4V的视觉基础能力。如图1(右)所示,我们使用现成的交互式分割模型,如SAM,将图像分割为不同粒度的区域,并在这些区域上叠加一组标记,例如字母数字、蒙版、框等。使用带有标记的图像作为输入,GPT-4V可以回答需要视觉基础的问题。我们进行了全面的实证研究,验证了SoM在广泛的细粒度视觉和多模态任务上的有效性。例如,我们的实验表明,具有SoM的GPT-4V在零-shot设置下在RefCOCOg上的表现优于最先进的完全微调的指代分割模型。
English
We present Set-of-Mark (SoM), a new visual prompting method, to unleash the
visual grounding abilities of large multimodal models (LMMs), such as GPT-4V.
As illustrated in Fig. 1 (right), we employ off-the-shelf interactive
segmentation models, such as SAM, to partition an image into regions at
different levels of granularity, and overlay these regions with a set of marks
e.g., alphanumerics, masks, boxes. Using the marked image as input, GPT-4V can
answer the questions that require visual grounding. We perform a comprehensive
empirical study to validate the effectiveness of SoM on a wide range of
fine-grained vision and multimodal tasks. For example, our experiments show
that GPT-4V with SoM outperforms the state-of-the-art fully-finetuned referring
segmentation model on RefCOCOg in a zero-shot setting.