LLM-Rec:透過促使大型語言模型進行個性化推薦
LLM-Rec: Personalized Recommendation via Prompting Large Language Models
July 24, 2023
作者: Hanjia Lyu, Song Jiang, Hanqing Zeng, Yinglong Xia, Jiebo Luo
cs.AI
摘要
我們研究了各種提示策略,以增強大型語言模型(LLMs)通過輸入擴充來提高個性化內容推薦的性能。我們提出的方法名為LLM-Rec,包括四種不同的提示策略:(1)基本提示,(2)推薦驅動提示,(3)參與引導提示,以及(4)推薦驅動+參與引導提示。我們的實證實驗表明,將原始內容描述與LLM生成的擴增輸入文本結合,使用這些提示策略可提高推薦性能。這一發現凸顯了將多樣的提示和輸入擴充技術納入大型語言模型以增強個性化內容推薦能力的重要性。
English
We investigate various prompting strategies for enhancing personalized
content recommendation performance with large language models (LLMs) through
input augmentation. Our proposed approach, termed LLM-Rec, encompasses four
distinct prompting strategies: (1) basic prompting, (2) recommendation-driven
prompting, (3) engagement-guided prompting, and (4) recommendation-driven +
engagement-guided prompting. Our empirical experiments show that combining the
original content description with the augmented input text generated by LLM
using these prompting strategies leads to improved recommendation performance.
This finding highlights the importance of incorporating diverse prompts and
input augmentation techniques to enhance the recommendation capabilities with
large language models for personalized content recommendation.