LLM-Rec:通过大型语言模型提示进行个性化推荐
LLM-Rec: Personalized Recommendation via Prompting Large Language Models
July 24, 2023
作者: Hanjia Lyu, Song Jiang, Hanqing Zeng, Yinglong Xia, Jiebo Luo
cs.AI
摘要
我们研究了各种提示策略,通过输入增强来提高大型语言模型(LLMs)在个性化内容推荐性能方面的表现。我们提出的方法称为LLM-Rec,包括四种不同的提示策略:(1)基本提示,(2)推荐驱动提示,(3)参与引导提示,以及(4)推荐驱动+参与引导提示。我们的实证实验表明,将原始内容描述与LLM生成的增强输入文本结合起来,使用这些提示策略可以提高推荐性能。这一发现突显了结合多样的提示和输入增强技术以提升大型语言模型在个性化内容推荐中的推荐能力的重要性。
English
We investigate various prompting strategies for enhancing personalized
content recommendation performance with large language models (LLMs) through
input augmentation. Our proposed approach, termed LLM-Rec, encompasses four
distinct prompting strategies: (1) basic prompting, (2) recommendation-driven
prompting, (3) engagement-guided prompting, and (4) recommendation-driven +
engagement-guided prompting. Our empirical experiments show that combining the
original content description with the augmented input text generated by LLM
using these prompting strategies leads to improved recommendation performance.
This finding highlights the importance of incorporating diverse prompts and
input augmentation techniques to enhance the recommendation capabilities with
large language models for personalized content recommendation.