你的AI代理在購買什麼?評估、影響與代理式電子商務的新興問題
What Is Your AI Agent Buying? Evaluation, Implications and Emerging Questions for Agentic E-Commerce
August 4, 2025
作者: Amine Allouah, Omar Besbes, Josué D Figueroa, Yash Kanoria, Akshit Kumar
cs.AI
摘要
線上市場將因代表消費者行事的自主AI代理而發生轉變。不再是人類瀏覽和點擊,視覺語言模型(VLM)代理能夠解析網頁、評估產品並進行交易。這引發了一個根本性問題:AI代理會購買什麼,以及為什麼?我們開發了ACES,這是一個沙盒環境,將一個與平台無關的VLM代理與一個完全可編程的模擬市場配對,以研究這一問題。我們首先在簡單任務的背景下進行基本理性檢查,然後通過隨機化產品位置、價格、評分、評論、贊助標籤和平台推薦,獲得了前沿VLM實際購物行為的因果估計。模型顯示出強烈但異質的位置效應:所有模型都偏好頂行,但不同模型偏好不同列,這削弱了普遍“頂部”排名的假設。它們對贊助標籤進行懲罰,並獎勵推薦。對價格、評分和評論的敏感性在方向上與人類相似,但在不同模型之間幅度差異顯著。受賣家使用AI代理優化產品列表的情境啟發,我們展示了一個賣方代理,通過針對AI買家偏好對產品描述進行微調,如果AI主導的購物成為主流,可以帶來顯著的市場份額增長。我們還發現,不同模型之間的模態產品選擇可能不同,在某些情況下,需求可能集中在少數幾款產品上,這引發了競爭問題。總之,我們的結果揭示了AI代理在電子商務環境中可能如何行為,並在AI主導的生態系統中提出了具體的賣家策略、平台設計和監管問題。
English
Online marketplaces will be transformed by autonomous AI agents acting on
behalf of consumers. Rather than humans browsing and clicking,
vision-language-model (VLM) agents can parse webpages, evaluate products, and
transact. This raises a fundamental question: what do AI agents buy, and why?
We develop ACES, a sandbox environment that pairs a platform-agnostic VLM agent
with a fully programmable mock marketplace to study this question. We first
conduct basic rationality checks in the context of simple tasks, and then, by
randomizing product positions, prices, ratings, reviews, sponsored tags, and
platform endorsements, we obtain causal estimates of how frontier VLMs actually
shop. Models show strong but heterogeneous position effects: all favor the top
row, yet different models prefer different columns, undermining the assumption
of a universal "top" rank. They penalize sponsored tags and reward
endorsements. Sensitivities to price, ratings, and reviews are directionally
human-like but vary sharply in magnitude across models. Motivated by scenarios
where sellers use AI agents to optimize product listings, we show that a
seller-side agent that makes minor tweaks to product descriptions, targeting AI
buyer preferences, can deliver substantial market-share gains if AI-mediated
shopping dominates. We also find that modal product choices can differ across
models and, in some cases, demand may concentrate on a few select products,
raising competition questions. Together, our results illuminate how AI agents
may behave in e-commerce settings and surface concrete seller strategy,
platform design, and regulatory questions in an AI-mediated ecosystem.