您的AI代理在购买什么?评估、影响及代理式电子商务的新兴问题
What Is Your AI Agent Buying? Evaluation, Implications and Emerging Questions for Agentic E-Commerce
August 4, 2025
作者: Amine Allouah, Omar Besbes, Josué D Figueroa, Yash Kanoria, Akshit Kumar
cs.AI
摘要
在线市场将由代表消费者行事的自主AI代理彻底改变。不同于人类浏览和点击,视觉-语言模型(VLM)代理能够解析网页、评估产品并完成交易。这引发了一个根本性问题:AI代理购买什么,以及为何购买?为此,我们开发了ACES,一个将平台无关的VLM代理与完全可编程的模拟市场配对的环境,以探究这一问题。我们首先在简单任务背景下进行基本理性检验,随后通过随机化产品位置、价格、评分、评论、赞助标签及平台推荐,获取前沿VLM实际购物行为的因果估计。模型展现出强烈但异质的位置效应:所有模型均偏好首行,但不同模型青睐不同列,挑战了“顶部”排名普遍性的假设。它们对赞助标签持负面态度,而对推荐给予正面响应。对价格、评分和评论的敏感度在方向上与人类相似,但在不同模型间幅度差异显著。鉴于卖家利用AI代理优化产品列表的情景,我们展示了一个卖家端代理,通过微调产品描述以迎合AI买家偏好,若AI主导购物,可带来显著市场份额提升。我们还发现,不同模型间的主流产品选择可能相异,在某些情况下,需求可能集中于少数精选产品,引发竞争问题。综合而言,我们的研究揭示了AI代理在电子商务环境中的可能行为,并提出了在AI中介生态系统中具体的卖家策略、平台设计及监管问题。
English
Online marketplaces will be transformed by autonomous AI agents acting on
behalf of consumers. Rather than humans browsing and clicking,
vision-language-model (VLM) agents can parse webpages, evaluate products, and
transact. This raises a fundamental question: what do AI agents buy, and why?
We develop ACES, a sandbox environment that pairs a platform-agnostic VLM agent
with a fully programmable mock marketplace to study this question. We first
conduct basic rationality checks in the context of simple tasks, and then, by
randomizing product positions, prices, ratings, reviews, sponsored tags, and
platform endorsements, we obtain causal estimates of how frontier VLMs actually
shop. Models show strong but heterogeneous position effects: all favor the top
row, yet different models prefer different columns, undermining the assumption
of a universal "top" rank. They penalize sponsored tags and reward
endorsements. Sensitivities to price, ratings, and reviews are directionally
human-like but vary sharply in magnitude across models. Motivated by scenarios
where sellers use AI agents to optimize product listings, we show that a
seller-side agent that makes minor tweaks to product descriptions, targeting AI
buyer preferences, can deliver substantial market-share gains if AI-mediated
shopping dominates. We also find that modal product choices can differ across
models and, in some cases, demand may concentrate on a few select products,
raising competition questions. Together, our results illuminate how AI agents
may behave in e-commerce settings and surface concrete seller strategy,
platform design, and regulatory questions in an AI-mediated ecosystem.