最陡下降密度控制用於緊湊型3D高斯潑濺
Steepest Descent Density Control for Compact 3D Gaussian Splatting
May 8, 2025
作者: Peihao Wang, Yuehao Wang, Dilin Wang, Sreyas Mohan, Zhiwen Fan, Lemeng Wu, Ruisi Cai, Yu-Ying Yeh, Zhangyang Wang, Qiang Liu, Rakesh Ranjan
cs.AI
摘要
三維高斯潑濺(3DGS)已成為實現實時、高分辨率新視角合成的強大技術。通過將場景表示為高斯基元的混合體,3DGS利用GPU光柵化管線進行高效的渲染與重建。為優化場景覆蓋並捕捉細微細節,3DGS採用了一種密集化算法來生成額外的點。然而,這一過程往往導致冗餘的點雲,造成過高的內存使用、性能下降及巨大的存儲需求,這對在資源受限設備上的部署構成了重大挑戰。為解決這一限制,我們提出了一個理論框架,旨在揭示並改進3DGS中的密度控制。我們的分析表明,分割對於逃離鞍點至關重要。通過優化理論的方法,我們確立了密集化的必要條件,確定了最小子代高斯數目,找出了最優參數更新方向,並提供了子代不透明度歸一化的解析解。基於這些洞見,我們引入了SteepGS,它融合了最陡密度控制,這是一種在保持點雲緊湊的同時最小化損失的原則性策略。SteepGS在不影響渲染質量的前提下,實現了高斯點數約50%的減少,顯著提升了效率與可擴展性。
English
3D Gaussian Splatting (3DGS) has emerged as a powerful technique for
real-time, high-resolution novel view synthesis. By representing scenes as a
mixture of Gaussian primitives, 3DGS leverages GPU rasterization pipelines for
efficient rendering and reconstruction. To optimize scene coverage and capture
fine details, 3DGS employs a densification algorithm to generate additional
points. However, this process often leads to redundant point clouds, resulting
in excessive memory usage, slower performance, and substantial storage demands
- posing significant challenges for deployment on resource-constrained devices.
To address this limitation, we propose a theoretical framework that demystifies
and improves density control in 3DGS. Our analysis reveals that splitting is
crucial for escaping saddle points. Through an optimization-theoretic approach,
we establish the necessary conditions for densification, determine the minimal
number of offspring Gaussians, identify the optimal parameter update direction,
and provide an analytical solution for normalizing off-spring opacity. Building
on these insights, we introduce SteepGS, incorporating steepest density
control, a principled strategy that minimizes loss while maintaining a compact
point cloud. SteepGS achieves a ~50% reduction in Gaussian points without
compromising rendering quality, significantly enhancing both efficiency and
scalability.