FinSight:邁向現實世界的金融深度研究
FinSight: Towards Real-World Financial Deep Research
October 19, 2025
作者: Jiajie Jin, Yuyao Zhang, Yimeng Xu, Hongjin Qian, Yutao Zhu, Zhicheng Dou
cs.AI
摘要
生成專業的財務報告是一項耗時且對智力要求極高的過程,當前的人工智慧系統難以完全自動化這一任務。為應對這一挑戰,我們引入了FinSight(Financial InSight),這是一個新穎的多代理框架,用於生成高品質、多模態的財務報告。FinSight的核心是帶有可變記憶的程式碼代理(CAVM)架構,該架構將外部數據、設計工具和代理統一在一個可程式化的變數空間中,透過可執行程式碼實現靈活的數據收集、分析和報告生成。為確保專業級的視覺化效果,我們提出了一種迭代視覺增強機制,逐步將原始視覺輸出精煉為精緻的財務圖表。此外,一個兩階段的寫作框架將簡潔的分析鏈段擴展為連貫、引用意識強且多模態的報告,確保了分析的深度和結構的一致性。在多種公司和行業層面的任務實驗中,FinSight在事實準確性、分析深度和呈現品質方面均顯著優於所有基準系統,包括領先的深度研究系統,展示了生成接近人類專家品質報告的清晰路徑。
English
Generating professional financial reports is a labor-intensive and
intellectually demanding process that current AI systems struggle to fully
automate. To address this challenge, we introduce FinSight (Financial InSight),
a novel multi agent framework for producing high-quality, multimodal financial
reports. The foundation of FinSight is the Code Agent with Variable Memory
(CAVM) architecture, which unifies external data, designed tools, and agents
into a programmable variable space, enabling flexible data collection, analysis
and report generation through executable code. To ensure professional-grade
visualization, we propose an Iterative Vision-Enhanced Mechanism that
progressively refines raw visual outputs into polished financial charts.
Furthermore, a two stage Writing Framework expands concise Chain-of-Analysis
segments into coherent, citation-aware, and multimodal reports, ensuring both
analytical depth and structural consistency. Experiments on various company and
industry-level tasks demonstrate that FinSight significantly outperforms all
baselines, including leading deep research systems in terms of factual
accuracy, analytical depth, and presentation quality, demonstrating a clear
path toward generating reports that approach human-expert quality.