FinSight:迈向现实世界的金融深度研究
FinSight: Towards Real-World Financial Deep Research
October 19, 2025
作者: Jiajie Jin, Yuyao Zhang, Yimeng Xu, Hongjin Qian, Yutao Zhu, Zhicheng Dou
cs.AI
摘要
生成专业的财务报告是一项劳动密集且对智力要求极高的过程,当前的人工智能系统难以完全实现自动化。为应对这一挑战,我们引入了FinSight(金融洞察),一种创新的多智能体框架,用于制作高质量、多模态的财务报告。FinSight的核心是带有可变记忆的代码智能体(CAVM)架构,该架构将外部数据、设计工具及智能体统一到一个可编程的变量空间中,通过可执行代码实现灵活的数据收集、分析及报告生成。为确保专业级的可视化效果,我们提出了一种迭代视觉增强机制,逐步将原始视觉输出精炼为精美的财务图表。此外,一个两阶段的写作框架将简洁的分析链片段扩展为连贯、引用意识强且多模态的报告,保证了分析的深度与结构的一致性。在各类公司及行业层面的任务实验中,FinSight显著超越了所有基线系统,包括领先的深度研究系统,在事实准确性、分析深度及呈现质量方面均表现出色,展示了生成接近人类专家水平报告的清晰路径。
English
Generating professional financial reports is a labor-intensive and
intellectually demanding process that current AI systems struggle to fully
automate. To address this challenge, we introduce FinSight (Financial InSight),
a novel multi agent framework for producing high-quality, multimodal financial
reports. The foundation of FinSight is the Code Agent with Variable Memory
(CAVM) architecture, which unifies external data, designed tools, and agents
into a programmable variable space, enabling flexible data collection, analysis
and report generation through executable code. To ensure professional-grade
visualization, we propose an Iterative Vision-Enhanced Mechanism that
progressively refines raw visual outputs into polished financial charts.
Furthermore, a two stage Writing Framework expands concise Chain-of-Analysis
segments into coherent, citation-aware, and multimodal reports, ensuring both
analytical depth and structural consistency. Experiments on various company and
industry-level tasks demonstrate that FinSight significantly outperforms all
baselines, including leading deep research systems in terms of factual
accuracy, analytical depth, and presentation quality, demonstrating a clear
path toward generating reports that approach human-expert quality.