遊戲對話的去刻板化:在基於大型語言模型的NPC中平衡角色真實性與任務執行
Deflanderization for Game Dialogue: Balancing Character Authenticity with Task Execution in LLM-based NPCs
October 15, 2025
作者: Pasin Buakhaw, Kun Kerdthaisong, Phuree Phenhiran, Pitikorn Khlaisamniang, Supasate Vorathammathorn, Piyalitt Ittichaiwong, Nutchanon Yongsatianchot
cs.AI
摘要
大型語言模型(LLMs)的出現為遊戲環境中創建動態非玩家角色(NPCs)開闢了新機遇,使其既能執行功能性任務,又能生成符合角色設定的對話。本文中,我們(Tu_Character_lab)報告了參與2025年第二輪常識角色對話挑戰賽(CPDC)的情況,該賽事在三個賽道上評估智能體:任務導向對話、上下文感知對話及其整合。我們的方法結合了兩種互補策略:(i) 在API賽道中採用輕量級提示技術,包括一種去角色化提示方法,以抑制過度角色扮演並提升任務忠實度;(ii) 在GPU賽道中利用Qwen3-14B模型進行監督微調(SFT)和低秩適應(LoRA)的微調大模型。我們的最佳提交在任務1中排名第2,在API賽道的任務3中排名第2,在GPU賽道的任務3中排名第4。
English
The emergence of large language models (LLMs) has opened new opportunities
for cre- ating dynamic non-player characters (NPCs) in gaming environments,
enabling both func- tional task execution and persona-consistent dialogue
generation. In this paper, we (Tu_Character_lab) report our participation in
the Commonsense Persona-Grounded Dialogue Challenge (CPDC) 2025 Round 2, which
eval- uates agents across three tracks: task-oriented dialogue, context-aware
dialogue, and their integration. Our approach combines two complementary
strategies: (i) lightweight prompting techniques in the API track, including a
Deflanderization prompting method to suppress excessive role-play and improve
task fidelity, and (ii) fine-tuned large models in the GPU track, leveraging
Qwen3-14B with supervisedfinetuning (SFT) and Low-Rank Adaptation(LoRA). Our
best submissions ranked 2nd on Task 1, 2nd on Task 3 (API track), and 4th on
Task 3 (GPU track).