游戏对话的去扁平化:在基于大语言模型的NPC中平衡角色真实性与任务执行
Deflanderization for Game Dialogue: Balancing Character Authenticity with Task Execution in LLM-based NPCs
October 15, 2025
作者: Pasin Buakhaw, Kun Kerdthaisong, Phuree Phenhiran, Pitikorn Khlaisamniang, Supasate Vorathammathorn, Piyalitt Ittichaiwong, Nutchanon Yongsatianchot
cs.AI
摘要
大型语言模型(LLMs)的兴起为游戏环境中创建动态非玩家角色(NPCs)开辟了新机遇,不仅实现了功能性任务执行,还确保了角色一致性对话的生成。本文中,我们(Tu_Character_lab)报告了参与2025年第二回合常识性角色基础对话挑战赛(CPDC)的情况,该赛事评估了代理在三个赛道上的表现:任务导向对话、上下文感知对话及其整合。我们的方法结合了两种互补策略:(i) 在API赛道采用轻量级提示技术,包括一种去角色化提示方法,以抑制过度角色扮演并提升任务忠实度;(ii) 在GPU赛道微调大型模型,利用Qwen3-14B进行监督微调(SFT)及低秩适应(LoRA)。我们的最佳提交在任务1中排名第二,在任务3(API赛道)中排名第二,在任务3(GPU赛道)中排名第四。
English
The emergence of large language models (LLMs) has opened new opportunities
for cre- ating dynamic non-player characters (NPCs) in gaming environments,
enabling both func- tional task execution and persona-consistent dialogue
generation. In this paper, we (Tu_Character_lab) report our participation in
the Commonsense Persona-Grounded Dialogue Challenge (CPDC) 2025 Round 2, which
eval- uates agents across three tracks: task-oriented dialogue, context-aware
dialogue, and their integration. Our approach combines two complementary
strategies: (i) lightweight prompting techniques in the API track, including a
Deflanderization prompting method to suppress excessive role-play and improve
task fidelity, and (ii) fine-tuned large models in the GPU track, leveraging
Qwen3-14B with supervisedfinetuning (SFT) and Low-Rank Adaptation(LoRA). Our
best submissions ranked 2nd on Task 1, 2nd on Task 3 (API track), and 4th on
Task 3 (GPU track).