ChatPaper.aiChatPaper

InternVL:擴展視覺基礎模型並對通用視覺語言任務進行對齊

InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks

December 21, 2023
作者: Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Zhong Muyan, Qinglong Zhang, Xizhou Zhu, Lewei Lu, Bin Li, Ping Luo, Tong Lu, Yu Qiao, Jifeng Dai
cs.AI

摘要

大型語言模型(LLMs)的指數增長為多模式AGI系統開啟了眾多可能性。然而,視覺和視覺語言基礎模型的進展,這也是多模式AGI的關鍵元素之一,並未跟上LLMs的步伐。在這項工作中,我們設計了一個大規模視覺語言基礎模型(InternVL),將視覺基礎模型擴展到60億個參數,並逐步將其與大型語言模型對齊,使用來自各種來源的視訊圖像數據。該模型可廣泛應用於並在視覺感知任務(如圖像級或像素級識別)以及視覺語言任務(如零樣本圖像/視頻分類、零樣本圖像/視頻-文本檢索)上取得最先進的性能,並與LLMs連接以創建多模式對話系統。我們希望我們的研究能為多模式大型模型的發展做出貢獻。代碼和模型可在https://github.com/OpenGVLab/InternVL找到。
English
The exponential growth of large language models (LLMs) has opened up numerous possibilities for multi-modal AGI systems. However, the progress in vision and vision-language foundation models, which are also critical elements of multi-modal AGI, has not kept pace with LLMs. In this work, we design a large-scale vision-language foundation model (InternVL), which scales up the vision foundation model to 6 billion parameters and progressively aligns it with the large language model, using web-scale image-text data from various sources. This model can be broadly applied to and achieve state-of-the-art performance on visual perception tasks such as image-level or pixel-level recognition, vision-language tasks such as zero-shot image/video classification, zero-shot image/video-text retrieval, and link with LLMs to create multi-modal dialogue systems. We hope that our research could contribute to the development of multi-modal large models. Code and models are available at https://github.com/OpenGVLab/InternVL.
PDF201December 15, 2024