ChatPaper.aiChatPaper

InternVL:扩展视觉基础模型并对通用视觉-语言任务进行对齐

InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks

December 21, 2023
作者: Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Zhong Muyan, Qinglong Zhang, Xizhou Zhu, Lewei Lu, Bin Li, Ping Luo, Tong Lu, Yu Qiao, Jifeng Dai
cs.AI

摘要

大型语言模型(LLMs)的指数增长为多模态AGI系统开辟了许多可能性。然而,视觉和视觉语言基础模型的进展,这也是多模态AGI的关键要素之一,并没有跟上LLMs的步伐。在这项工作中,我们设计了一个大规模视觉语言基础模型(InternVL),将视觉基础模型扩展到60亿参数,并逐步将其与大型语言模型进行对齐,利用来自各种来源的大规模图像文本数据。该模型可广泛应用于并在视觉感知任务(如图像级或像素级识别)以及视觉语言任务(如零样本图像/视频分类、零样本图像/视频-文本检索)上取得最先进的性能,并与LLMs建立联系,创建多模态对话系统。我们希望我们的研究能为多模态大型模型的发展做出贡献。代码和模型可在https://github.com/OpenGVLab/InternVL找到。
English
The exponential growth of large language models (LLMs) has opened up numerous possibilities for multi-modal AGI systems. However, the progress in vision and vision-language foundation models, which are also critical elements of multi-modal AGI, has not kept pace with LLMs. In this work, we design a large-scale vision-language foundation model (InternVL), which scales up the vision foundation model to 6 billion parameters and progressively aligns it with the large language model, using web-scale image-text data from various sources. This model can be broadly applied to and achieve state-of-the-art performance on visual perception tasks such as image-level or pixel-level recognition, vision-language tasks such as zero-shot image/video classification, zero-shot image/video-text retrieval, and link with LLMs to create multi-modal dialogue systems. We hope that our research could contribute to the development of multi-modal large models. Code and models are available at https://github.com/OpenGVLab/InternVL.
PDF201December 15, 2024