OpenMathInstruct-1:一個包含180萬條數學指導調整數據的數據集。
OpenMathInstruct-1: A 1.8 Million Math Instruction Tuning Dataset
February 15, 2024
作者: Shubham Toshniwal, Ivan Moshkov, Sean Narenthiran, Daria Gitman, Fei Jia, Igor Gitman
cs.AI
摘要
最近的研究表明,合成生成的資料集對於訓練大型語言模型(LLMs)具有巨大潛力,特別是用於獲取特定技能。目前大規模數學教學調整資料集,如MetaMathQA(Yu等,2024年)和MAmmoTH(Yue等,2024年),是使用具有商業限制許可的封閉源LLMs的輸出構建而成。限制在這些資料生成流程中使用開源LLMs的一個關鍵原因是,最佳封閉源LLMs(如GPT-4)的數學技能與最佳開源LLMs之間存在較大差距。基於最近在開源LLMs中的進展,我們提出了提示新穎性和一些粗暴擴展,我們構建了OpenMathInstruct-1,一個包含180萬問題-解決方案對的數學教學調整資料集。該資料集是通過使用最近釋出並採用寬鬆許可的Mixtral模型,為GSM8K和MATH兩個流行的數學推理基準合成代碼解釋器解決方案而構建的。我們的最佳模型OpenMath-CodeLlama-70B,在OpenMathInstruct-1的子集上訓練,GSM8K得分為84.6%,MATH得分為50.7%,與最佳gpt-distilled模型相競爭。我們在商業寬鬆許可下釋出我們的代碼、模型和OpenMathInstruct-1資料集。
English
Recent work has shown the immense potential of synthetically generated
datasets for training large language models (LLMs), especially for acquiring
targeted skills. Current large-scale math instruction tuning datasets such as
MetaMathQA (Yu et al., 2024) and MAmmoTH (Yue et al., 2024) are constructed
using outputs from closed-source LLMs with commercially restrictive licenses. A
key reason limiting the use of open-source LLMs in these data generation
pipelines has been the wide gap between the mathematical skills of the best
closed-source LLMs, such as GPT-4, and the best open-source LLMs. Building on
the recent progress in open-source LLMs, our proposed prompting novelty, and
some brute-force scaling, we construct OpenMathInstruct-1, a math instruction
tuning dataset with 1.8M problem-solution pairs. The dataset is constructed by
synthesizing code-interpreter solutions for GSM8K and MATH, two popular math
reasoning benchmarks, using the recently released and permissively licensed
Mixtral model. Our best model, OpenMath-CodeLlama-70B, trained on a subset of
OpenMathInstruct-1, achieves a score of 84.6% on GSM8K and 50.7% on MATH, which
is competitive with the best gpt-distilled models. We release our code, models,
and the OpenMathInstruct-1 dataset under a commercially permissive license.Summary
AI-Generated Summary