OpenMathInstruct-1:一个包含180万条数学指导数据的数据集
OpenMathInstruct-1: A 1.8 Million Math Instruction Tuning Dataset
February 15, 2024
作者: Shubham Toshniwal, Ivan Moshkov, Sean Narenthiran, Daria Gitman, Fei Jia, Igor Gitman
cs.AI
摘要
最近的研究表明,合成生成的数据集对训练大型语言模型(LLMs)具有巨大潜力,特别是用于获取特定技能。当前大规模数学教学调优数据集,如MetaMathQA(Yu等,2024年)和MAmmoTH(Yue等,2024年),是利用具有商业限制许可的闭源LLMs的输出构建的。限制开源LLMs在这些数据生成流程中使用的一个关键原因是最佳闭源LLMs(如GPT-4)和最佳开源LLMs之间数学技能之间的巨大差距。借鉴最近开源LLMs的进展,我们提出了提示新颖性和一些蛮力扩展,构建了OpenMathInstruct-1,一个包含180万问题-解决方案对的数学教学调优数据集。该数据集通过使用最近发布且许可宽松的Mixtral模型,为GSM8K和MATH这两个流行的数学推理基准合成了代码解释器解决方案。我们的最佳模型OpenMath-CodeLlama-70B,在OpenMathInstruct-1的子集上训练,GSM8K得分为84.6%,MATH得分为50.7%,与最佳gpt-distilled模型相竞争。我们在商业许可下发布我们的代码、模型和OpenMathInstruct-1数据集。
English
Recent work has shown the immense potential of synthetically generated
datasets for training large language models (LLMs), especially for acquiring
targeted skills. Current large-scale math instruction tuning datasets such as
MetaMathQA (Yu et al., 2024) and MAmmoTH (Yue et al., 2024) are constructed
using outputs from closed-source LLMs with commercially restrictive licenses. A
key reason limiting the use of open-source LLMs in these data generation
pipelines has been the wide gap between the mathematical skills of the best
closed-source LLMs, such as GPT-4, and the best open-source LLMs. Building on
the recent progress in open-source LLMs, our proposed prompting novelty, and
some brute-force scaling, we construct OpenMathInstruct-1, a math instruction
tuning dataset with 1.8M problem-solution pairs. The dataset is constructed by
synthesizing code-interpreter solutions for GSM8K and MATH, two popular math
reasoning benchmarks, using the recently released and permissively licensed
Mixtral model. Our best model, OpenMath-CodeLlama-70B, trained on a subset of
OpenMathInstruct-1, achieves a score of 84.6% on GSM8K and 50.7% on MATH, which
is competitive with the best gpt-distilled models. We release our code, models,
and the OpenMathInstruct-1 dataset under a commercially permissive license.Summary
AI-Generated Summary