利用 GPT-4 進行自動翻譯後編輯
Leveraging GPT-4 for Automatic Translation Post-Editing
May 24, 2023
作者: Vikas Raunak, Amr Sharaf, Hany Hassan Awadallah, Arul Menezes
cs.AI
摘要
儘管神經機器翻譯(NMT)代表著機器翻譯(MT)的主流方法,NMT 模型的輸出仍需要經過翻譯後編輯來糾正錯誤並提升質量,特別是在關鍵情境下。在這項研究中,我們將翻譯後編輯的任務與大型語言模型(LLMs)形式化,並探索使用 GPT-4 自動編輯 NMT 輸出在多種語言對之間。我們的結果顯示,GPT-4 擅長進行翻譯後編輯,即使目標語言不是英語,也能產生有意義的編輯。值得注意的是,我們在 WMT-22 英中、英德、中英和德英語言對上,使用基於 GPT-4 的編輯後翻譯實現了最先進的表現,經由最先進的機器翻譯質量指標評估。
English
While Neural Machine Translation (NMT) represents the leading approach to
Machine Translation (MT), the outputs of NMT models still require translation
post-editing to rectify errors and enhance quality, particularly under critical
settings. In this work, we formalize the task of translation post-editing with
Large Language Models (LLMs) and explore the use of GPT-4 to automatically
post-edit NMT outputs across several language pairs. Our results demonstrate
that GPT-4 is adept at translation post-editing and produces meaningful edits
even when the target language is not English. Notably, we achieve
state-of-the-art performance on WMT-22 English-Chinese, English-German,
Chinese-English and German-English language pairs using GPT-4 based
post-editing, as evaluated by state-of-the-art MT quality metrics.