利用GPT-4进行自动翻译后编辑
Leveraging GPT-4 for Automatic Translation Post-Editing
May 24, 2023
作者: Vikas Raunak, Amr Sharaf, Hany Hassan Awadallah, Arul Menezes
cs.AI
摘要
尽管神经机器翻译(NMT)代表着机器翻译(MT)的主导方法,但NMT模型的输出仍需要翻译后编辑以纠正错误并提高质量,尤其是在关键环境下。在这项工作中,我们将使用大型语言模型(LLMs)正式规范翻译后编辑任务,并探索使用GPT-4自动对多种语言对的NMT输出进行后编辑。我们的结果表明,GPT-4擅长翻译后编辑,并且即使目标语言不是英语,也能产生有意义的编辑。值得注意的是,我们利用基于GPT-4的后编辑,在WMT-22英中、英德、中英和德英语言对上实现了最先进的性能,经过最先进的MT质量指标评估。
English
While Neural Machine Translation (NMT) represents the leading approach to
Machine Translation (MT), the outputs of NMT models still require translation
post-editing to rectify errors and enhance quality, particularly under critical
settings. In this work, we formalize the task of translation post-editing with
Large Language Models (LLMs) and explore the use of GPT-4 to automatically
post-edit NMT outputs across several language pairs. Our results demonstrate
that GPT-4 is adept at translation post-editing and produces meaningful edits
even when the target language is not English. Notably, we achieve
state-of-the-art performance on WMT-22 English-Chinese, English-German,
Chinese-English and German-English language pairs using GPT-4 based
post-editing, as evaluated by state-of-the-art MT quality metrics.