MeshLRM:用於高質量網格的大型重建模型
MeshLRM: Large Reconstruction Model for High-Quality Mesh
April 18, 2024
作者: Xinyue Wei, Kai Zhang, Sai Bi, Hao Tan, Fujun Luan, Valentin Deschaintre, Kalyan Sunkavalli, Hao Su, Zexiang Xu
cs.AI
摘要
我們提出了MeshLRM,一種基於LRM的新方法,可以在不到一秒的時間內僅從四張輸入圖像重建出高質量網格。與先前專注於NeRF-based重建的大型重建模型(LRMs)不同,MeshLRM將可微網格提取和渲染融入LRM框架中。這使得可以通過微調預先訓練的NeRF LRM並進行網格渲染來進行端到端的網格重建。此外,我們通過簡化先前LRMs中的幾個複雜設計來改進LRM架構。MeshLRM的NeRF初始化是通過低分辨率和高分辨率圖像進行順序訓練的;這種新的LRM訓練策略實現了顯著更快的收斂,從而在更少的計算量下獲得更好的質量。我們的方法從稀疏視圖輸入中實現了最先進的網格重建,同時還支持許多下游應用,包括文本到3D和單圖像到3D生成。項目頁面:https://sarahweiii.github.io/meshlrm/
English
We propose MeshLRM, a novel LRM-based approach that can reconstruct a
high-quality mesh from merely four input images in less than one second.
Different from previous large reconstruction models (LRMs) that focus on
NeRF-based reconstruction, MeshLRM incorporates differentiable mesh extraction
and rendering within the LRM framework. This allows for end-to-end mesh
reconstruction by fine-tuning a pre-trained NeRF LRM with mesh rendering.
Moreover, we improve the LRM architecture by simplifying several complex
designs in previous LRMs. MeshLRM's NeRF initialization is sequentially trained
with low- and high-resolution images; this new LRM training strategy enables
significantly faster convergence and thereby leads to better quality with less
compute. Our approach achieves state-of-the-art mesh reconstruction from
sparse-view inputs and also allows for many downstream applications, including
text-to-3D and single-image-to-3D generation. Project page:
https://sarahweiii.github.io/meshlrm/Summary
AI-Generated Summary