MeshLRM:用于高质量网格的大型重建模型
MeshLRM: Large Reconstruction Model for High-Quality Mesh
April 18, 2024
作者: Xinyue Wei, Kai Zhang, Sai Bi, Hao Tan, Fujun Luan, Valentin Deschaintre, Kalyan Sunkavalli, Hao Su, Zexiang Xu
cs.AI
摘要
我们提出了MeshLRM,这是一种基于LRM的新方法,可以在不到一秒的时间内仅从四幅输入图像中重建出高质量的网格。与先前专注于基于NeRF的重建的大型重建模型(LRMs)不同,MeshLRM在LRM框架内结合了可微的网格提取和渲染。这使得通过微调预训练的NeRF LRM与网格渲染实现端到端的网格重建成为可能。此外,我们通过简化先前LRMs中的若干复杂设计来改进LRM架构。MeshLRM的NeRF初始化经过低分辨率和高分辨率图像的顺序训练;这种新的LRM训练策略实现了显著更快的收敛速度,从而以更少的计算量实现更好的质量。我们的方法实现了从稀疏视图输入中的最先进的网格重建,同时还支持许多下游应用,包括文本到3D和单图像到3D生成。项目页面:https://sarahweiii.github.io/meshlrm/
English
We propose MeshLRM, a novel LRM-based approach that can reconstruct a
high-quality mesh from merely four input images in less than one second.
Different from previous large reconstruction models (LRMs) that focus on
NeRF-based reconstruction, MeshLRM incorporates differentiable mesh extraction
and rendering within the LRM framework. This allows for end-to-end mesh
reconstruction by fine-tuning a pre-trained NeRF LRM with mesh rendering.
Moreover, we improve the LRM architecture by simplifying several complex
designs in previous LRMs. MeshLRM's NeRF initialization is sequentially trained
with low- and high-resolution images; this new LRM training strategy enables
significantly faster convergence and thereby leads to better quality with less
compute. Our approach achieves state-of-the-art mesh reconstruction from
sparse-view inputs and also allows for many downstream applications, including
text-to-3D and single-image-to-3D generation. Project page:
https://sarahweiii.github.io/meshlrm/Summary
AI-Generated Summary