Enhance-A-Video:免費提升生成影片品質
Enhance-A-Video: Better Generated Video for Free
February 11, 2025
作者: Yang Luo, Xuanlei Zhao, Mengzhao Chen, Kaipeng Zhang, Wenqi Shao, Kai Wang, Zhangyang Wang, Yang You
cs.AI
摘要
基於 DiT 的影片生成已取得顯著成果,但對於增強現有模型的研究仍相對未被探索。在這項研究中,我們提出了一種無需訓練的方法,用於增強 DiT 基礎生成的影片的連貫性和質量,稱為 Enhance-A-Video。其核心思想是基於非對角時間注意力分佈來增強跨幀之間的相關性。由於其簡單的設計,我們的方法可以輕鬆應用於大多數基於 DiT 的影片生成框架,無需重新訓練或微調。在各種基於 DiT 的影片生成模型中,我們的方法展示了在時間一致性和視覺質量方面的顯著改進。我們希望這項研究能激發未來在影片生成增強方面的探索。
English
DiT-based video generation has achieved remarkable results, but research into
enhancing existing models remains relatively unexplored. In this work, we
introduce a training-free approach to enhance the coherence and quality of
DiT-based generated videos, named Enhance-A-Video. The core idea is enhancing
the cross-frame correlations based on non-diagonal temporal attention
distributions. Thanks to its simple design, our approach can be easily applied
to most DiT-based video generation frameworks without any retraining or
fine-tuning. Across various DiT-based video generation models, our approach
demonstrates promising improvements in both temporal consistency and visual
quality. We hope this research can inspire future explorations in video
generation enhancement.Summary
AI-Generated Summary