ChatPaper.aiChatPaper

Enhance-A-Video:免費提升生成影片品質

Enhance-A-Video: Better Generated Video for Free

February 11, 2025
作者: Yang Luo, Xuanlei Zhao, Mengzhao Chen, Kaipeng Zhang, Wenqi Shao, Kai Wang, Zhangyang Wang, Yang You
cs.AI

摘要

基於 DiT 的影片生成已取得顯著成果,但對於增強現有模型的研究仍相對未被探索。在這項研究中,我們提出了一種無需訓練的方法,用於增強 DiT 基礎生成的影片的連貫性和質量,稱為 Enhance-A-Video。其核心思想是基於非對角時間注意力分佈來增強跨幀之間的相關性。由於其簡單的設計,我們的方法可以輕鬆應用於大多數基於 DiT 的影片生成框架,無需重新訓練或微調。在各種基於 DiT 的影片生成模型中,我們的方法展示了在時間一致性和視覺質量方面的顯著改進。我們希望這項研究能激發未來在影片生成增強方面的探索。
English
DiT-based video generation has achieved remarkable results, but research into enhancing existing models remains relatively unexplored. In this work, we introduce a training-free approach to enhance the coherence and quality of DiT-based generated videos, named Enhance-A-Video. The core idea is enhancing the cross-frame correlations based on non-diagonal temporal attention distributions. Thanks to its simple design, our approach can be easily applied to most DiT-based video generation frameworks without any retraining or fine-tuning. Across various DiT-based video generation models, our approach demonstrates promising improvements in both temporal consistency and visual quality. We hope this research can inspire future explorations in video generation enhancement.
PDF213February 12, 2025