ChatPaper.aiChatPaper

Enhance-A-Video:免费生成更好视频

Enhance-A-Video: Better Generated Video for Free

February 11, 2025
作者: Yang Luo, Xuanlei Zhao, Mengzhao Chen, Kaipeng Zhang, Wenqi Shao, Kai Wang, Zhangyang Wang, Yang You
cs.AI

摘要

基于DiT的视频生成取得了显著成果,但对于增强现有模型的研究仍相对未被探索。在这项工作中,我们介绍了一种无需训练的方法来增强基于DiT生成的视频的连贯性和质量,命名为Enhance-A-Video。核心思想是基于非对角线时间注意力分布增强帧间相关性。由于其简单设计,我们的方法可以轻松应用于大多数基于DiT的视频生成框架,无需重新训练或微调。在各种基于DiT的视频生成模型中,我们的方法展示了在时间一致性和视觉质量方面的有希望的改进。我们希望这项研究能激发未来在视频生成增强方面的探索。
English
DiT-based video generation has achieved remarkable results, but research into enhancing existing models remains relatively unexplored. In this work, we introduce a training-free approach to enhance the coherence and quality of DiT-based generated videos, named Enhance-A-Video. The core idea is enhancing the cross-frame correlations based on non-diagonal temporal attention distributions. Thanks to its simple design, our approach can be easily applied to most DiT-based video generation frameworks without any retraining or fine-tuning. Across various DiT-based video generation models, our approach demonstrates promising improvements in both temporal consistency and visual quality. We hope this research can inspire future explorations in video generation enhancement.
PDF213February 12, 2025