Human101:在100秒內從一個視角訓練100+FPS的人體高斯模型
Human101: Training 100+FPS Human Gaussians in 100s from 1 View
December 23, 2023
作者: Mingwei Li, Jiachen Tao, Zongxin Yang, Yi Yang
cs.AI
摘要
從單視角視頻重建人體在虛擬現實領域中發揮著關鍵作用。一個普遍的應用場景需要快速重建高保真度的3D數字人類,同時確保實時渲染和交互。現有方法往往難以滿足這兩個要求。本文介紹了Human101,一個新穎的框架,能夠從單視角視頻中訓練3D高斯模型並在100秒內進行渲染,達到100+ FPS。我們的方法利用3D高斯飛濺的優勢,提供了對3D人體的明確且高效的表示。Human101與先前基於NeRF的流程有所不同,巧妙地應用了以人為中心的前向高斯動畫方法來變形3D高斯模型的參數,從而提高渲染速度(即以令人印象深刻的60+ FPS渲染1024分辨率圖像,以及以100+ FPS渲染512分辨率圖像)。實驗結果表明,我們的方法顯著超越了當前方法,每秒幀數增加了多達10倍,並提供可比擬或更優質的渲染質量。代碼和演示將在https://github.com/longxiang-ai/Human101 上發布。
English
Reconstructing the human body from single-view videos plays a pivotal role in
the virtual reality domain. One prevalent application scenario necessitates the
rapid reconstruction of high-fidelity 3D digital humans while simultaneously
ensuring real-time rendering and interaction. Existing methods often struggle
to fulfill both requirements. In this paper, we introduce Human101, a novel
framework adept at producing high-fidelity dynamic 3D human reconstructions
from 1-view videos by training 3D Gaussians in 100 seconds and rendering in
100+ FPS. Our method leverages the strengths of 3D Gaussian Splatting, which
provides an explicit and efficient representation of 3D humans. Standing apart
from prior NeRF-based pipelines, Human101 ingeniously applies a Human-centric
Forward Gaussian Animation method to deform the parameters of 3D Gaussians,
thereby enhancing rendering speed (i.e., rendering 1024-resolution images at an
impressive 60+ FPS and rendering 512-resolution images at 100+ FPS).
Experimental results indicate that our approach substantially eclipses current
methods, clocking up to a 10 times surge in frames per second and delivering
comparable or superior rendering quality. Code and demos will be released at
https://github.com/longxiang-ai/Human101.