从单张图像构建三维城镇
Constructing a 3D Town from a Single Image
May 21, 2025
作者: Kaizhi Zheng, Ruijian Zhang, Jing Gu, Jie Yang, Xin Eric Wang
cs.AI
摘要
获取精细的三维场景通常需要昂贵的设备、多视角数据或费时费力的建模过程。因此,一种轻量级的替代方案——从单一俯视图像生成复杂的三维场景,在实际应用中扮演着至关重要的角色。尽管近期的三维生成模型在物体级别上取得了显著成果,但将其扩展至全场景生成时,常出现几何不一致、布局幻觉及低质量网格等问题。本研究中,我们提出了3DTown,一个无需训练即可从单一俯视图像合成逼真且连贯三维场景的框架。我们的方法基于两大原则:基于区域的生成以提升图像到三维的对齐与分辨率,以及空间感知的三维修复以确保全局场景的一致性和高质量几何生成。具体而言,我们将输入图像分解为重叠区域,利用预训练的三维物体生成器分别生成各区域,随后通过掩码修正流修复过程填补缺失几何,同时保持结构连续性。这种模块化设计使我们能够克服分辨率瓶颈,保留空间结构,而无需三维监督或微调。跨多种场景的广泛实验表明,3DTown在几何质量、空间连贯性和纹理保真度方面均优于包括Trellis、Hunyuan3D-2和TripoSG在内的最先进基线方法。我们的成果证明,采用一种有原则、无需训练的方法,从单一图像实现高质量三维城镇生成是可行的。
English
Acquiring detailed 3D scenes typically demands costly equipment, multi-view
data, or labor-intensive modeling. Therefore, a lightweight alternative,
generating complex 3D scenes from a single top-down image, plays an essential
role in real-world applications. While recent 3D generative models have
achieved remarkable results at the object level, their extension to full-scene
generation often leads to inconsistent geometry, layout hallucinations, and
low-quality meshes. In this work, we introduce 3DTown, a training-free
framework designed to synthesize realistic and coherent 3D scenes from a single
top-down view. Our method is grounded in two principles: region-based
generation to improve image-to-3D alignment and resolution, and spatial-aware
3D inpainting to ensure global scene coherence and high-quality geometry
generation. Specifically, we decompose the input image into overlapping regions
and generate each using a pretrained 3D object generator, followed by a masked
rectified flow inpainting process that fills in missing geometry while
maintaining structural continuity. This modular design allows us to overcome
resolution bottlenecks and preserve spatial structure without requiring 3D
supervision or fine-tuning. Extensive experiments across diverse scenes show
that 3DTown outperforms state-of-the-art baselines, including Trellis,
Hunyuan3D-2, and TripoSG, in terms of geometry quality, spatial coherence, and
texture fidelity. Our results demonstrate that high-quality 3D town generation
is achievable from a single image using a principled, training-free approach.Summary
AI-Generated Summary