TUVF:学习通用纹理UV辐射场
TUVF: Learning Generalizable Texture UV Radiance Fields
May 4, 2023
作者: An-Chieh Cheng, Xueting Li, Sifei Liu, Xiaolong Wang
cs.AI
摘要
纹理是创建视觉吸引力和逼真的3D模型的重要方面。在本文中,我们研究了在给定3D资产形状的情况下生成高保真度纹理的问题,相较于通用3D形状建模,这个问题相对较少被探索。我们的目标是促进可控制的纹理生成过程,使得一个纹理编码可以对应于特定的外观风格,而与来自某一类别的任何输入形状无关。我们引入了纹理UV辐射场(TUVF),在可学习的UV球空间中生成纹理,而不是直接在3D形状上生成。这使得纹理可以与底层形状解耦,并且可转移到共享相同UV空间的其他形状,即来自同一类别的形状。我们将UV球空间与辐射场相结合,这提供了比传统纹理贴图更高效和准确的纹理表示。我们在真实世界的对象数据集上进行实验,不仅实现了逼真的合成,而且在纹理控制和编辑方面也比现有技术取得了实质性的改进。项目页面:https://www.anjiecheng.me/TUVF
English
Textures are a vital aspect of creating visually appealing and realistic 3D
models. In this paper, we study the problem of generating high-fidelity texture
given shapes of 3D assets, which has been relatively less explored compared
with generic 3D shape modeling. Our goal is to facilitate a controllable
texture generation process, such that one texture code can correspond to a
particular appearance style independent of any input shapes from a category. We
introduce Texture UV Radiance Fields (TUVF) that generate textures in a
learnable UV sphere space rather than directly on the 3D shape. This allows the
texture to be disentangled from the underlying shape and transferable to other
shapes that share the same UV space, i.e., from the same category. We integrate
the UV sphere space with the radiance field, which provides a more efficient
and accurate representation of textures than traditional texture maps. We
perform our experiments on real-world object datasets where we achieve not only
realistic synthesis but also substantial improvements over state-of-the-arts on
texture controlling and editing. Project Page: https://www.anjiecheng.me/TUVF