ChatPaper.aiChatPaper

PokéLLMon:使用大型语言模型的精灵对战人类水平代理

PokéLLMon: A Human-Parity Agent for Pokémon Battles with Large Language Models

February 2, 2024
作者: Sihao Hu, Tiansheng Huang, Ling Liu
cs.AI

摘要

我们介绍了Pok\'eLLMon,这是第一个在战术战斗游戏中达到人类水平性能的LLM实体代理,如在Pok\'emon战斗中所展示的。Pok\'eLLMon的设计融合了三种关键策略:(i) 上下文强化学习,即时利用从战斗中提取的基于文本的反馈来迭代地优化策略;(ii) 知识增强生成,检索外部知识以抵消幻觉,并使代理能够及时和正确地行动;(iii) 一致行动生成,以减轻代理面对强大对手时的惊慌切换现象,从而躲避战斗。我们展示了与人类的在线战斗,证明了Pok\'eLLMon的人类化战略和及时决策能力,其在梯队比赛中获胜率达到49%,在邀请战斗中获胜率达到56%。我们的实现和可玩战斗日志可在以下链接找到:https://github.com/git-disl/PokeLLMon。
English
We introduce Pok\'eLLMon, the first LLM-embodied agent that achieves human-parity performance in tactical battle games, as demonstrated in Pok\'emon battles. The design of Pok\'eLLMon incorporates three key strategies: (i) In-context reinforcement learning that instantly consumes text-based feedback derived from battles to iteratively refine the policy; (ii) Knowledge-augmented generation that retrieves external knowledge to counteract hallucination and enables the agent to act timely and properly; (iii) Consistent action generation to mitigate the panic switching phenomenon when the agent faces a powerful opponent and wants to elude the battle. We show that online battles against human demonstrates Pok\'eLLMon's human-like battle strategies and just-in-time decision making, achieving 49\% of win rate in the Ladder competitions and 56\% of win rate in the invited battles. Our implementation and playable battle logs are available at: https://github.com/git-disl/PokeLLMon.
PDF323December 15, 2024