YOLO与专家混合体相遇:面向鲁棒目标检测的自适应专家路由机制
YOLO Meets Mixture-of-Experts: Adaptive Expert Routing for Robust Object Detection
November 17, 2025
作者: Ori Meiraz, Sharon Shalev, Avishai Weizman
cs.AI
摘要
本文提出了一种新颖的混合专家目标检测框架,通过在多路YOLOv9-T专家网络间引入自适应路由机制,实现动态特征 specialization。相较于单一YOLOv9-T模型,该框架在平均精度均值(mAP)和平均召回率(AR)指标上均表现出更优性能。
English
This paper presents a novel Mixture-of-Experts framework for object detection, incorporating adaptive routing among multiple YOLOv9-T experts to enable dynamic feature specialization and achieve higher mean Average Precision (mAP) and Average Recall (AR) compared to a single YOLOv9-T model.