EvTexture:面向视频超分辨率的事件驱动纹理增强
EvTexture: Event-driven Texture Enhancement for Video Super-Resolution
June 19, 2024
作者: Dachun Kai, Jiayao Lu, Yueyi Zhang, Xiaoyan Sun
cs.AI
摘要
基于事件的视觉因其高时间分辨率和高动态范围等独特特性而受到越来越多的关注。最近,它被用于视频超分辨率(VSR)以增强流估计和时间对齐。本文提出了一种新的VSR方法,名为EvTexture,该方法不是用于运动学习,而是利用事件信号进行纹理增强。EvTexture利用事件的高频细节更好地恢复VSR中的纹理区域。在EvTexture中,引入了一个新的纹理增强分支。我们进一步引入了一个迭代纹理增强模块,逐步探索高时间分辨率事件信息以进行纹理恢复。这使得在多次迭代中逐渐改进纹理区域,从而获得更准确丰富的高分辨率细节。实验结果表明,我们的EvTexture在四个数据集上实现了最先进的性能。对于具有丰富纹理的Vid4数据集,我们的方法与最近的基于事件的方法相比,可以获得高达4.67dB的增益。源代码:https://github.com/DachunKai/EvTexture。
English
Event-based vision has drawn increasing attention due to its unique
characteristics, such as high temporal resolution and high dynamic range. It
has been used in video super-resolution (VSR) recently to enhance the flow
estimation and temporal alignment. Rather than for motion learning, we propose
in this paper the first VSR method that utilizes event signals for texture
enhancement. Our method, called EvTexture, leverages high-frequency details of
events to better recover texture regions in VSR. In our EvTexture, a new
texture enhancement branch is presented. We further introduce an iterative
texture enhancement module to progressively explore the
high-temporal-resolution event information for texture restoration. This allows
for gradual refinement of texture regions across multiple iterations, leading
to more accurate and rich high-resolution details. Experimental results show
that our EvTexture achieves state-of-the-art performance on four datasets. For
the Vid4 dataset with rich textures, our method can get up to 4.67dB gain
compared with recent event-based methods. Code:
https://github.com/DachunKai/EvTexture.Summary
AI-Generated Summary