ChatPaper.aiChatPaper

三角形光柵化+:支持不透明三角形的可微分渲染

Triangle Splatting+: Differentiable Rendering with Opaque Triangles

September 29, 2025
作者: Jan Held, Renaud Vandeghen, Sanghyun Son, Daniel Rebain, Matheus Gadelha, Yi Zhou, Ming C. Lin, Marc Van Droogenbroeck, Andrea Tagliasacchi
cs.AI

摘要

近年來,三維場景重建與新視角合成技術取得了快速進展。神經輻射場(Neural Radiance Fields)展示了連續體積輻射場能夠實現高質量的圖像合成,但其冗長的訓練與渲染時間限制了實際應用。三維高斯濺射(3D Gaussian Splatting, 3DGS)通過使用數百萬個高斯分佈來表示場景,解決了這些問題,實現了實時渲染與快速優化。然而,高斯基元本身與虛擬現實頭顯及實時圖形應用中基於網格的管線並不兼容。現有解決方案嘗試通過後處理或兩階段管線將高斯轉換為網格,這增加了複雜性並降低了視覺質量。在本研究中,我們提出了三角形濺射+(Triangle Splatting+),該方法直接在可微濺射框架內優化計算機圖形學的基本基元——三角形。我們制定了三角形參數化方法,通過共享頂點實現連接性,並設計了一種訓練策略來強制三角形不透明。最終輸出無需後處理即可直接應用於標準圖形引擎。在Mip-NeRF360和Tanks & Temples數據集上的實驗表明,Triangle Splatting+在基於網格的新視角合成中達到了最先進的性能。我們的方法在視覺保真度上超越了先前的濺射方法,同時保持了訓練的高效與快速。此外,生成的半連接網格支持基於物理的模擬或交互式漫遊等下游應用。項目頁面請訪問:https://trianglesplatting2.github.io/trianglesplatting2/。
English
Reconstructing 3D scenes and synthesizing novel views has seen rapid progress in recent years. Neural Radiance Fields demonstrated that continuous volumetric radiance fields can achieve high-quality image synthesis, but their long training and rendering times limit practicality. 3D Gaussian Splatting (3DGS) addressed these issues by representing scenes with millions of Gaussians, enabling real-time rendering and fast optimization. However, Gaussian primitives are not natively compatible with the mesh-based pipelines used in VR headsets, and real-time graphics applications. Existing solutions attempt to convert Gaussians into meshes through post-processing or two-stage pipelines, which increases complexity and degrades visual quality. In this work, we introduce Triangle Splatting+, which directly optimizes triangles, the fundamental primitive of computer graphics, within a differentiable splatting framework. We formulate triangle parametrization to enable connectivity through shared vertices, and we design a training strategy that enforces opaque triangles. The final output is immediately usable in standard graphics engines without post-processing. Experiments on the Mip-NeRF360 and Tanks & Temples datasets show that Triangle Splatting+achieves state-of-the-art performance in mesh-based novel view synthesis. Our method surpasses prior splatting approaches in visual fidelity while remaining efficient and fast to training. Moreover, the resulting semi-connected meshes support downstream applications such as physics-based simulation or interactive walkthroughs. The project page is https://trianglesplatting2.github.io/trianglesplatting2/.
PDF72October 6, 2025