三角面片渲染+:支持不透明三角形的可微分渲染
Triangle Splatting+: Differentiable Rendering with Opaque Triangles
September 29, 2025
作者: Jan Held, Renaud Vandeghen, Sanghyun Son, Daniel Rebain, Matheus Gadelha, Yi Zhou, Ming C. Lin, Marc Van Droogenbroeck, Andrea Tagliasacchi
cs.AI
摘要
近年来,三维场景重建与新颖视角合成技术取得了飞速进展。神经辐射场(NeRF)展示了连续体积辐射场能够实现高质量的图像合成,但其漫长的训练与渲染时间限制了实际应用。三维高斯溅射(3DGS)通过用数百万个高斯分布表示场景,解决了这些问题,实现了实时渲染与快速优化。然而,高斯基元与虚拟现实头显及实时图形应用中基于网格的流程并不天然兼容。现有解决方案尝试通过后处理或两阶段流程将高斯分布转换为网格,这增加了复杂性并降低了视觉质量。在本研究中,我们提出了三角形溅射+(Triangle Splatting+),它直接在可微分的溅射框架内优化计算机图形学的基本基元——三角形。我们设计了三角形参数化方法,通过共享顶点实现连接性,并制定了一种训练策略,强制三角形不透明。最终输出无需后处理即可直接用于标准图形引擎。在Mip-NeRF360和Tanks & Temples数据集上的实验表明,Triangle Splatting+在基于网格的新颖视角合成中达到了最先进的性能。我们的方法在视觉保真度上超越了先前的溅射方法,同时保持了训练的高效与快速。此外,生成的半连接网格支持基于物理的模拟或交互式漫游等下游应用。项目页面为https://trianglesplatting2.github.io/trianglesplatting2/。
English
Reconstructing 3D scenes and synthesizing novel views has seen rapid progress
in recent years. Neural Radiance Fields demonstrated that continuous volumetric
radiance fields can achieve high-quality image synthesis, but their long
training and rendering times limit practicality. 3D Gaussian Splatting (3DGS)
addressed these issues by representing scenes with millions of Gaussians,
enabling real-time rendering and fast optimization. However, Gaussian
primitives are not natively compatible with the mesh-based pipelines used in VR
headsets, and real-time graphics applications. Existing solutions attempt to
convert Gaussians into meshes through post-processing or two-stage pipelines,
which increases complexity and degrades visual quality. In this work, we
introduce Triangle Splatting+, which directly optimizes triangles, the
fundamental primitive of computer graphics, within a differentiable splatting
framework. We formulate triangle parametrization to enable connectivity through
shared vertices, and we design a training strategy that enforces opaque
triangles. The final output is immediately usable in standard graphics engines
without post-processing. Experiments on the Mip-NeRF360 and Tanks & Temples
datasets show that Triangle Splatting+achieves state-of-the-art performance in
mesh-based novel view synthesis. Our method surpasses prior splatting
approaches in visual fidelity while remaining efficient and fast to training.
Moreover, the resulting semi-connected meshes support downstream applications
such as physics-based simulation or interactive walkthroughs. The project page
is https://trianglesplatting2.github.io/trianglesplatting2/.