ChatPaper.aiChatPaper

Hunyuan3D 2.1:从图像到高保真3D资产,配备生产级PBR材质

Hunyuan3D 2.1: From Images to High-Fidelity 3D Assets with Production-Ready PBR Material

June 18, 2025
作者: Team Hunyuan3D, Shuhui Yang, Mingxin Yang, Yifei Feng, Xin Huang, Sheng Zhang, Zebin He, Di Luo, Haolin Liu, Yunfei Zhao, Qingxiang Lin, Zeqiang Lai, Xianghui Yang, Huiwen Shi, Zibo Zhao, Bowen Zhang, Hongyu Yan, Lifu Wang, Sicong Liu, Jihong Zhang, Meng Chen, Liang Dong, Yiwen Jia, Yulin Cai, Jiaao Yu, Yixuan Tang, Dongyuan Guo, Junlin Yu, Hao Zhang, Zheng Ye, Peng He, Runzhou Wu, Shida Wei, Chao Zhang, Yonghao Tan, Yifu Sun, Lin Niu, Shirui Huang, Bojian Zheng, Shu Liu, Shilin Chen, Xiang Yuan, Xiaofeng Yang, Kai Liu, Jianchen Zhu, Peng Chen, Tian Liu, Di Wang, Yuhong Liu, Linus, Jie Jiang, Jingwei Huang, Chunchao Guo
cs.AI

摘要

3D AI生成内容(AIGC)是一个充满激情的领域,它极大地加速了游戏、电影和设计中3D模型的创建。尽管已有多个突破性模型彻底改变了3D生成技术,但由于收集、处理和训练3D模型所涉及的复杂性,该领域目前仍主要面向研究人员、开发者和设计师。为应对这些挑战,本教程以Hunyuan3D 2.1为例进行案例研究。本教程提供了全面的、循序渐进的指导,涵盖3D数据处理、3D生成模型训练以及使用Hunyuan3D 2.1评估模型性能的全过程。Hunyuan3D 2.1是一个用于生成高分辨率、带纹理3D资产的先进系统,其核心由两部分组成:用于形状生成的Hunyuan3D-DiT和用于纹理合成的Hunyuan3D-Paint。我们将深入探讨整个工作流程,包括数据准备、模型架构、训练策略、评估指标及部署应用。通过本教程的学习,您将掌握微调或开发适用于游戏、虚拟现实及工业设计应用的强大3D生成模型所需的知识。
English
3D AI-generated content (AIGC) is a passionate field that has significantly accelerated the creation of 3D models in gaming, film, and design. Despite the development of several groundbreaking models that have revolutionized 3D generation, the field remains largely accessible only to researchers, developers, and designers due to the complexities involved in collecting, processing, and training 3D models. To address these challenges, we introduce Hunyuan3D 2.1 as a case study in this tutorial. This tutorial offers a comprehensive, step-by-step guide on processing 3D data, training a 3D generative model, and evaluating its performance using Hunyuan3D 2.1, an advanced system for producing high-resolution, textured 3D assets. The system comprises two core components: the Hunyuan3D-DiT for shape generation and the Hunyuan3D-Paint for texture synthesis. We will explore the entire workflow, including data preparation, model architecture, training strategies, evaluation metrics, and deployment. By the conclusion of this tutorial, you will have the knowledge to finetune or develop a robust 3D generative model suitable for applications in gaming, virtual reality, and industrial design.
PDF102June 23, 2025