LayerD:將柵格圖形設計分解為圖層
LayerD: Decomposing Raster Graphic Designs into Layers
September 29, 2025
作者: Tomoyuki Suzuki, Kang-Jun Liu, Naoto Inoue, Kota Yamaguchi
cs.AI
摘要
設計師在圖層表示中製作和編輯圖形設計,但一旦合成為點陣圖像,基於圖層的編輯就變得不可能。在本研究中,我們提出了LayerD,一種將點陣圖形設計分解為圖層的方法,以實現可重新編輯的創意工作流程。LayerD通過迭代提取未被遮擋的前景圖層來解決分解任務。我們提出了一種簡單而有效的精煉方法,利用圖形設計中圖層通常呈現均勻外觀的假設。由於分解問題本身是不適定的,且真實圖層結構可能不可靠,我們開發了一種質量指標來應對這一難題。在實驗中,我們展示了LayerD成功實現了高質量的分解,並超越了基線方法。我們還展示了LayerD與最先進的圖像生成器和基於圖層的編輯的結合應用。
English
Designers craft and edit graphic designs in a layer representation, but
layer-based editing becomes impossible once composited into a raster image. In
this work, we propose LayerD, a method to decompose raster graphic designs into
layers for re-editable creative workflow. LayerD addresses the decomposition
task by iteratively extracting unoccluded foreground layers. We propose a
simple yet effective refinement approach taking advantage of the assumption
that layers often exhibit uniform appearance in graphic designs. As
decomposition is ill-posed and the ground-truth layer structure may not be
reliable, we develop a quality metric that addresses the difficulty. In
experiments, we show that LayerD successfully achieves high-quality
decomposition and outperforms baselines. We also demonstrate the use of LayerD
with state-of-the-art image generators and layer-based editing.