LayerD:将栅格图形设计分解为分层结构
LayerD: Decomposing Raster Graphic Designs into Layers
September 29, 2025
作者: Tomoyuki Suzuki, Kang-Jun Liu, Naoto Inoue, Kota Yamaguchi
cs.AI
摘要
设计师通常在图层表示中创作和编辑图形设计,但一旦合成到栅格图像中,基于图层的编辑便无法进行。本研究提出LayerD方法,旨在将栅格图形设计分解为可重新编辑的图层,以支持创意工作流程。LayerD通过迭代提取未被遮挡的前景图层来解决分解任务。我们提出了一种简单而有效的优化方法,该方法利用了图形设计中图层通常呈现均匀外观的假设。鉴于分解问题的不适定性及真实图层结构可能不可靠,我们开发了一种质量度量标准来应对这一难题。实验表明,LayerD成功实现了高质量的分解,并超越了基线方法。我们还展示了LayerD与最先进的图像生成器及基于图层的编辑功能结合使用的实例。
English
Designers craft and edit graphic designs in a layer representation, but
layer-based editing becomes impossible once composited into a raster image. In
this work, we propose LayerD, a method to decompose raster graphic designs into
layers for re-editable creative workflow. LayerD addresses the decomposition
task by iteratively extracting unoccluded foreground layers. We propose a
simple yet effective refinement approach taking advantage of the assumption
that layers often exhibit uniform appearance in graphic designs. As
decomposition is ill-posed and the ground-truth layer structure may not be
reliable, we develop a quality metric that addresses the difficulty. In
experiments, we show that LayerD successfully achieves high-quality
decomposition and outperforms baselines. We also demonstrate the use of LayerD
with state-of-the-art image generators and layer-based editing.