ChatPaper.aiChatPaper

PhysGaussian:物理整合的三維高斯函數用於生成動態

PhysGaussian: Physics-Integrated 3D Gaussians for Generative Dynamics

November 20, 2023
作者: Tianyi Xie, Zeshun Zong, Yuxin Qiu, Xuan Li, Yutao Feng, Yin Yang, Chenfanfu Jiang
cs.AI

摘要

我們介紹了 PhysGaussian,一種新方法,它無縫地將基於物理的牛頓動力學與 3D 高斯函數結合,以實現高質量的新型運動合成。採用自定義的材料點方法(MPM),我們的方法豐富了 3D 高斯核函數,具有具有物理意義的運動變形和機械應力屬性,所有這些都是根據連續力學原則演變而來。我們方法的一個明確特徵是物理模擬和視覺渲染之間的無縫集成:兩個組件都使用相同的 3D 高斯核函數作為它們的離散表示。這消除了三角形/四面體網格化、鋪設立方體、"籠狀網格"或任何其他幾何嵌入的必要性,突顯了"所見即所模擬(WS^2)"原則。我們的方法展示了在各種材料上的卓越多功能性,包括彈性實體、金屬、非牛頓流體和顆粒材料,展示了其在創建具有新視角和運動的多樣視覺內容方面的強大能力。我們的項目頁面位於:https://xpandora.github.io/PhysGaussian/
English
We introduce PhysGaussian, a new method that seamlessly integrates physically grounded Newtonian dynamics within 3D Gaussians to achieve high-quality novel motion synthesis. Employing a custom Material Point Method (MPM), our approach enriches 3D Gaussian kernels with physically meaningful kinematic deformation and mechanical stress attributes, all evolved in line with continuum mechanics principles. A defining characteristic of our method is the seamless integration between physical simulation and visual rendering: both components utilize the same 3D Gaussian kernels as their discrete representations. This negates the necessity for triangle/tetrahedron meshing, marching cubes, "cage meshes," or any other geometry embedding, highlighting the principle of "what you see is what you simulate (WS^2)." Our method demonstrates exceptional versatility across a wide variety of materials--including elastic entities, metals, non-Newtonian fluids, and granular materials--showcasing its strong capabilities in creating diverse visual content with novel viewpoints and movements. Our project page is at: https://xpandora.github.io/PhysGaussian/
PDF221December 15, 2024