ChatPaper.aiChatPaper

PhysGaussian:用于生成动力学的物理集成3D高斯函数

PhysGaussian: Physics-Integrated 3D Gaussians for Generative Dynamics

November 20, 2023
作者: Tianyi Xie, Zeshun Zong, Yuxin Qiu, Xuan Li, Yutao Feng, Yin Yang, Chenfanfu Jiang
cs.AI

摘要

我们介绍了PhysGaussian,这是一种新方法,无缝地将基于物理的牛顿动力学与3D高斯函数相结合,实现高质量的新颖运动合成。采用自定义的材料点方法(MPM),我们的方法利用具有物理意义的运动变形和机械应力属性丰富了3D高斯函数核,所有这些属性都遵循连续力学原理。我们方法的一个显著特征是物理模拟和视觉渲染之间的无缝集成:两个组件都使用相同的3D高斯函数核作为它们的离散表示。这消除了三角形/四面体网格、Marching Cubes、“cage meshes”或任何其他几何嵌入的必要性,突显了“所见即所模拟(WS^2)”原则。我们的方法展示了在各种材料上的卓越多功能性,包括弹性实体、金属、非牛顿流体和颗粒材料,展示了其在创建具有新视角和运动的多样视觉内容方面的强大能力。我们的项目页面位于:https://xpandora.github.io/PhysGaussian/
English
We introduce PhysGaussian, a new method that seamlessly integrates physically grounded Newtonian dynamics within 3D Gaussians to achieve high-quality novel motion synthesis. Employing a custom Material Point Method (MPM), our approach enriches 3D Gaussian kernels with physically meaningful kinematic deformation and mechanical stress attributes, all evolved in line with continuum mechanics principles. A defining characteristic of our method is the seamless integration between physical simulation and visual rendering: both components utilize the same 3D Gaussian kernels as their discrete representations. This negates the necessity for triangle/tetrahedron meshing, marching cubes, "cage meshes," or any other geometry embedding, highlighting the principle of "what you see is what you simulate (WS^2)." Our method demonstrates exceptional versatility across a wide variety of materials--including elastic entities, metals, non-Newtonian fluids, and granular materials--showcasing its strong capabilities in creating diverse visual content with novel viewpoints and movements. Our project page is at: https://xpandora.github.io/PhysGaussian/
PDF221December 15, 2024