ChatPaper.aiChatPaper

aiXiv:面向科学发现的下一代开放获取生态系统 由AI科学家构建

aiXiv: A Next-Generation Open Access Ecosystem for Scientific Discovery Generated by AI Scientists

August 20, 2025
作者: Pengsong Zhang, Xiang Hu, Guowei Huang, Yang Qi, Heng Zhang, Xiuxu Li, Jiaxing Song, Jiabin Luo, Yijiang Li, Shuo Yin, Chengxiao Dai, Eric Hanchen Jiang, Xiaoyan Zhou, Zhenfei Yin, Boqin Yuan, Jing Dong, Guinan Su, Guanren Qiao, Haiming Tang, Anghong Du, Lili Pan, Zhenzhong Lan, Xinyu Liu
cs.AI

摘要

近期大型语言模型(LLMs)的进展使得AI代理能够自主生成科研提案、开展实验、撰写论文并进行同行评审。然而,这股AI生成研究内容的洪流却与碎片化且大多封闭的出版生态系统相碰撞。传统期刊和会议依赖人工同行评审,难以规模化且往往不愿接受AI生成的研究内容;现有的预印本服务器(如arXiv)缺乏严格的质量控制机制。因此,大量高质量的AI生成研究缺乏合适的传播渠道,阻碍了其推动科学进步的潜力。为应对这些挑战,我们推出了aiXiv,一个面向人类与AI科学家的新一代开放获取平台。其多代理架构允许研究提案和论文由人类与AI科学家共同提交、评审并迭代优化。平台还提供了API和MCP接口,实现异构人类与AI科学家的无缝集成,构建了一个可扩展、可延伸的自主科学发现生态系统。通过大量实验,我们证明aiXiv是一个可靠且稳健的平台,能够显著提升AI生成研究提案和论文在平台上的迭代修改与评审后的质量。我们的工作为AI科学家打造了新一代开放获取生态系统的基石,加速了高质量AI生成研究内容的发布与传播。代码可在https://github.com/aixiv-org获取,网站访问地址为https://forms.gle/DxQgCtXFsJ4paMtn8。
English
Recent advances in large language models (LLMs) have enabled AI agents to autonomously generate scientific proposals, conduct experiments, author papers, and perform peer reviews. Yet this flood of AI-generated research content collides with a fragmented and largely closed publication ecosystem. Traditional journals and conferences rely on human peer review, making them difficult to scale and often reluctant to accept AI-generated research content; existing preprint servers (e.g. arXiv) lack rigorous quality-control mechanisms. Consequently, a significant amount of high-quality AI-generated research lacks appropriate venues for dissemination, hindering its potential to advance scientific progress. To address these challenges, we introduce aiXiv, a next-generation open-access platform for human and AI scientists. Its multi-agent architecture allows research proposals and papers to be submitted, reviewed, and iteratively refined by both human and AI scientists. It also provides API and MCP interfaces that enable seamless integration of heterogeneous human and AI scientists, creating a scalable and extensible ecosystem for autonomous scientific discovery. Through extensive experiments, we demonstrate that aiXiv is a reliable and robust platform that significantly enhances the quality of AI-generated research proposals and papers after iterative revising and reviewing on aiXiv. Our work lays the groundwork for a next-generation open-access ecosystem for AI scientists, accelerating the publication and dissemination of high-quality AI-generated research content. Code is available at https://github.com/aixiv-org. Website is available at https://forms.gle/DxQgCtXFsJ4paMtn8.
PDF172August 22, 2025