ChatPaper.aiChatPaper

无需优化的3D高斯溅射风格迁移

Optimization-Free Style Transfer for 3D Gaussian Splats

August 7, 2025
作者: Raphael Du Sablon, David Hart
cs.AI

摘要

针对3D高斯溅射的风格迁移任务,已有诸多研究探索,但这些方法通常需要在融入风格信息的同时重建或微调溅射,或是在溅射表示上优化特征提取网络。我们提出了一种无需重建与优化的3D高斯溅射风格化方法。该方法通过在溅射表示的隐式表面上构建图结构来实现。随后,采用一种基于表面的前馈式风格化技术,并将其插值回场景中的各个溅射。这一过程使得任何风格图像与3D高斯溅射都能直接应用,无需额外训练或优化。此外,该方法还能实现溅射的快速风格化,即便在消费级硬件上也能在2分钟内完成。我们展示了该途径所达到的高质量成果,并与其他3D高斯溅射风格迁移方法进行了对比。相关代码已公开于https://github.com/davidmhart/FastSplatStyler。
English
The task of style transfer for 3D Gaussian splats has been explored in many previous works, but these require reconstructing or fine-tuning the splat while incorporating style information or optimizing a feature extraction network on the splat representation. We propose a reconstruction- and optimization-free approach to stylizing 3D Gaussian splats. This is done by generating a graph structure across the implicit surface of the splat representation. A feed-forward, surface-based stylization method is then used and interpolated back to the individual splats in the scene. This allows for any style image and 3D Gaussian splat to be used without any additional training or optimization. This also allows for fast stylization of splats, achieving speeds under 2 minutes even on consumer-grade hardware. We demonstrate the quality results this approach achieves and compare to other 3D Gaussian splat style transfer methods. Code is publicly available at https://github.com/davidmhart/FastSplatStyler.
PDF32August 13, 2025