论文 Copilot:一种自进化高效的LLM系统,用于个性化学术辅助
Paper Copilot: A Self-Evolving and Efficient LLM System for Personalized Academic Assistance
September 6, 2024
作者: Guanyu Lin, Tao Feng, Pengrui Han, Ge Liu, Jiaxuan You
cs.AI
摘要
随着科学研究的不断增多,研究人员面临着艰巨的任务,需要浏览和阅读大量文献。现有的解决方案,如文档问答,未能有效地提供个性化和实时更新的信息。我们提出了Paper Copilot,这是一个自我进化的高效LLM系统,旨在基于思维检索、用户资料和高性能优化来辅助研究人员。具体而言,Paper Copilot能够提供个性化的研究服务,并维护一个实时更新的数据库。定量评估表明,Paper Copilot在高效部署后节省了69.92\%的时间。本文详细介绍了Paper Copilot的设计和实施,突出了其对个性化学术支持的贡献以及简化研究过程的潜力。
English
As scientific research proliferates, researchers face the daunting task of
navigating and reading vast amounts of literature. Existing solutions, such as
document QA, fail to provide personalized and up-to-date information
efficiently. We present Paper Copilot, a self-evolving, efficient LLM system
designed to assist researchers, based on thought-retrieval, user profile and
high performance optimization. Specifically, Paper Copilot can offer
personalized research services, maintaining a real-time updated database.
Quantitative evaluation demonstrates that Paper Copilot saves 69.92\% of time
after efficient deployment. This paper details the design and implementation of
Paper Copilot, highlighting its contributions to personalized academic support
and its potential to streamline the research process.Summary
AI-Generated Summary