Vibe AIGC:基于智能体编排的内容生成新范式
Vibe AIGC: A New Paradigm for Content Generation via Agentic Orchestration
February 4, 2026
作者: Jiaheng Liu, Yuanxing Zhang, Shihao Li, Xinping Lei
cs.AI
摘要
過去十年間,生成式人工智能的發展軌跡始終由模型中心化範式主導,該範式受規模化定律驅動。儘管在視覺保真度方面取得顯著飛躍,這種方法卻遭遇了「可用性天花板」——即意圖-執行鴻溝(創作者的高層意圖與當前單次生成模型的隨機黑箱特性之間的根本性脫節)。本文受氛圍編程啟發,提出氛圍AIGC這一通過智能體協作實現內容生成的新範式,其核心在於分層多智能體工作流的自主合成。
在此範式下,用戶角色超越傳統的提示詞工程,演變為提供「氛圍」的指揮官——這種高層表徵涵蓋審美偏好、功能邏輯等要素。中樞元規劃器則作為系統架構師,將此「氛圍」解構為可執行、可驗證且自適應的智能體流水線。通過從隨機推理向邏輯編排的轉變,氛圍AIGC在人類想像與機器執行之間架設橋樑。我們主張這一範式轉變將重構人機協作生態,使AI從脆弱的推理引擎轉型為堅實的系統級工程夥伴,從而實現複雜長週期數字資產創作的普適化。
English
For the past decade, the trajectory of generative artificial intelligence (AI) has been dominated by a model-centric paradigm driven by scaling laws. Despite significant leaps in visual fidelity, this approach has encountered a ``usability ceiling'' manifested as the Intent-Execution Gap (i.e., the fundamental disparity between a creator's high-level intent and the stochastic, black-box nature of current single-shot models). In this paper, inspired by the Vibe Coding, we introduce the Vibe AIGC, a new paradigm for content generation via agentic orchestration, which represents the autonomous synthesis of hierarchical multi-agent workflows.
Under this paradigm, the user's role transcends traditional prompt engineering, evolving into a Commander who provides a Vibe, a high-level representation encompassing aesthetic preferences, functional logic, and etc. A centralized Meta-Planner then functions as a system architect, deconstructing this ``Vibe'' into executable, verifiable, and adaptive agentic pipelines. By transitioning from stochastic inference to logical orchestration, Vibe AIGC bridges the gap between human imagination and machine execution. We contend that this shift will redefine the human-AI collaborative economy, transforming AI from a fragile inference engine into a robust system-level engineering partner that democratizes the creation of complex, long-horizon digital assets.