ChatPaper.aiChatPaper

Branched Schrödinger Bridge Matching

June 10, 2025
Authors: Sophia Tang, Yinuo Zhang, Alexander Tong, Pranam Chatterjee
cs.AI

Abstract

Predicting the intermediate trajectories between an initial and target distribution is a central problem in generative modeling. Existing approaches, such as flow matching and Schr\"odinger Bridge Matching, effectively learn mappings between two distributions by modeling a single stochastic path. However, these methods are inherently limited to unimodal transitions and cannot capture branched or divergent evolution from a common origin to multiple distinct outcomes. To address this, we introduce Branched Schr\"odinger Bridge Matching (BranchSBM), a novel framework that learns branched Schr\"odinger bridges. BranchSBM parameterizes multiple time-dependent velocity fields and growth processes, enabling the representation of population-level divergence into multiple terminal distributions. We show that BranchSBM is not only more expressive but also essential for tasks involving multi-path surface navigation, modeling cell fate bifurcations from homogeneous progenitor states, and simulating diverging cellular responses to perturbations.

PDF12June 12, 2025